
RETURN ON AUERBACH THEOREM ABOUT BOUNDED LINEAR

GROUPS

LUCAS BORBOLETA

Abstract. This work revisits the theorem given in 1932 by Auerbach about bounded
linear groups.

1. Introduction

In 1932 [1], Auerbach proved that in any �nite vector space each bounded linear group
left invariant a quadratic and positive form. This work revisits his proof with modern
notation, and aims at paying attention to weaknesses. Only the real �eld R is treated
here.

2. Definitions and Theorem

The vector space, noted E, is considered on the real �eld R and of �nite dimension. Its
norm is general, so it can be non-euclidean. So E is a �nite Banach space.

De�nition 1. A quadratic form is de�ned as an application Q : E → R, such that
Q (x) = B (x, x), for some bi-linear and symmetric form B : E × E → R.

De�nition 2. A quadratic form is said �positive� if ∀x ∈ E, x 6= 0⇒ B (x, x) > 0.

The set of linear applications over E is a vector space L (E). Also the norm of E
induces a norm on L (E) as follows.

De�nition 3. The norm of a linear application A : E → E is de�ned as:
‖A‖ , Inf {c ∈ R : ∀x ∈ E, ‖gx‖ ≤ c ‖x‖}

De�nition 4. A linear group G is said �bounded� if Sup {‖g‖ : g ∈ G} <∞.

Theorem 5. If G is a bounded linear group then there exists a quadratic and positive

form Q that is invariant by G: ∀g ∈ G,∀x ∈ E,Q (gx) = Q (x).

3. Auxiliary definitions, lemmas, and proof plan

Let us rephrase the proof of [1].
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3.1. The set of quadratic forms is a vector space Q (E). To each quadratic form
Q one associates a bi-linear and symmetric form B, such that Q (x) = B (x, x). This
association is unique.

Indeed:

Q (x+ y) = B (x+ y, x+ y) = B (x, x) +B (y, y) + 2B (x, y) = Q (x) +Q (y) + 2B (x, y)

So:

B (x, y) =
1

2
(Q (x+ y)−Q (x)−Q (y))

It follows that the linear combination of two quadratic forms Q = λ1Q1 + λ2Q2 makes
sense because associated to the following bi-linear form B = λ1B1 + λ2B2, indeed:

B (x, y) = λ1B1 (x, y) + λ2B2 (x, y)

B (x, y) =
λ1
2
(Q1 (x+ y)−Q1 (x)−Q1 (y)) +

λ2
2
(Q2 (x+ y)−Q2 (x)−Q2 (y))

B (x, y) =
1

2
(Q (x+ y)−Q (x)−Q (y))

The neutral element Q = 0 exists, which is associated to the null bi-linear and sym-
metric form.

3.2. Let us de�ned a norm over the vector space Q (E). Let us check that Q →
Inf

{
c ∈ R : ∀x ∈ E, |Q (x)| ≤ c ‖x‖2

}
is a norm, noting that by construction |Q (x)| ≤

‖Q‖ · ‖x‖2.
• ‖Q‖ = 0⇒ ∀x ∈ E, |Q (x)| ≤ 0⇒ ∀x ∈ E,Q (x) = 0⇒ Q = 0
• ∀x ∈ E, |λQ (x)| = |λ| · |Q (x)| ⇒ ∀x ∈ E, |λQ (x)| ≤ |λ| · ‖Q‖ · ‖x‖2 ⇒ ‖λQ‖ =
|λ| · ‖Q‖
• ∀x ∈ E, |Q1 (x) +Q2 (x)| ≤ |Q1 (x)|+|Q2 (x)| ≤ (‖Q1‖+ ‖Q2‖)·‖x‖2 ⇒ ‖Q1 +Q2‖ ≤
‖Q1‖+ ‖Q2‖

3.3. To each linear application A : E → E one can associate a linear application

A : Q (E)→ Q (E). The associated application is de�ned as A (Q) (x) , Q (Ax), and it
is linear. Indeed:
A (λ1Q1 + λ2Q2) (x) = (λ1Q1 + λ2Q2) (Ax) = λ1Q1 (Ax)+λ2Q2 (Ax) = (λ1A (Q1) + λ2A (Q2)) (x) .
Let us denotes this mapping q : L (E)→ L (Q (E)), so that one can note q (A) = A.

3.4. If A : E → E is non singular then be also A : Q (E) → Q (E). Since the
considered vector space are of �nite dimensions, it is su�cient to proof that linear ap-
plications are injective in order to proof their are bijective. Or equivalently that their
kernel is reduced to the neutral element. So let us search for the kernel of the associ-
ated linear application A : Q (E) → Q (E). Let us consider R a quadratic form in this
kernel. This means A (R) = 0 or ∀x ∈ E,R (Ax) = 0. Since A is bijective this implies:
∀y ∈ E,R (y) = 0. So one concludes that R = 0, which proofs the property.
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3.5. To any linear group G over E one associates a linear group H over Q (E).
The set H is de�ned as H , {q (g) : g ∈ G}. It has been proved that for any A, A = q (A)
is a linear application. So each member of H is a linear application. Let us check the
axioms of a group for H:

• The composition A1A2 of two linear applications over Q (E) is a linear application
over Q (E), and with A1 = q (g1) and A2 = q (g2) , one obtains A1A2 = q (g1g2).
So the set H is stable by composition of its elements.
• The identity of G induces the identity of H.
• Each regular application g of G over E induces a regular application q (g) of H
over Q (E). So each element of H has an inverse inside H.

3.6. The linear group H is bounded. Indeed:

• For each h ∈ H, there is g ∈ G such that h = q(g).
• ‖q (g) (Q)‖ = Inf

{
c ∈ R : ∀x ∈ E, |Q (gx)| ≤ c ‖x‖2

}
.

• But for x 6= 0, Q (gx) = ‖gx‖2 ·Q
(

gx
‖gx‖

)
= ‖x‖2 ·

∥∥∥g x
‖x‖

∥∥∥2 ·Q( gx
‖gx‖

)
.

• Considering that
∣∣∣Q( gx

‖gx‖

)∣∣∣ ≤ ‖Q‖ and ∥∥∥g x
‖x‖

∥∥∥ ≤ ‖g‖, one gets |Q (gx)| ≤ ‖Q‖ ·
‖g‖ · ‖x‖2.
• So ‖q (g) (Q)‖ = ‖Q‖ · ‖g‖.
• So for each h ∈ H, ‖h‖ = ‖g‖ with h = q(g).
• Since G is bounded then be also H.

3.7. The set of positive quadratic forms is convex. Indeed if Q1 and Q2 are two
quadratic and positive forms then be also λ1Q1 + λ2Q2 for any positive reals λ1 > 0 and
λ2 > 0. As well for convex combination where λ1 + λ2 = 1 and λ1 ≥ 0 and λ2 ≥ 0.

3.8. Action of H on a given positive quadratic form. Let us select a quadratic
and positive form Q0, so being not null. And let us consider the set of quadratic forms
H (Q0) , {h (Q0) : h ∈ H} = {q (g) (Q0) : g ∈ G}. This set is not empty since it contains
at least the action of the identity that leads to the element Q0.

3.8.1. All elements of H (Q0) are positive quadratic forms. Indeed:
∀g ∈ G,∀x ∈ E, q (g) (Q0) (x) = Q0 (gx) ≥ 0.

3.8.2. H (Q0) is a bounded set for the norm of Q (E). Indeed:

• ∀h ∈ H, ‖h (Q0)‖ ≤ ‖h‖ · ‖Q0‖.
• Since H is bounded then be also H (Q0).

3.8.3. Let us de�ned Ĥ (Q0) the convex extension of H (Q0). It is de�ned as follows:

Ĥ (Q0) ,
{∑

i=1,n λiQi : Qi ∈ H (Q0) , λi ≥ 0,
∑

i=1,n λi = 1
}

Each element of Ĥ (Q0) is also de�nite positive.

3.8.4. Ĥ (Q0)is bounded. Indeed:∥∥∥∑i=1,n λiQi

∥∥∥ ≤∑i=1,n λi ‖Qi‖ ≤
(∑

i=1,n λi

)
Max {‖Qi‖ : i ∈ [1, n]} =Max {‖Qi‖ : i ∈ [1, n]} ≤

‖Q0‖ ·Max {‖h‖ : h ∈ H}

3.8.5. Ĥ (Q0)is an invariant set by H. Indeed: ∀h ∈ H, h
(∑

i=1,n λiQi

)
=
∑

i=1,n λih (Qi) =∑
i=1,n λiRi with Ri ∈ H (Q0).
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3.8.6. If H (Q0) is a �nite set. Let us construct a special element Q̂0 , the gravity center

of Ĥ (Q0), as Q̂0 =
1
n

∑
i=1,nQi, where H (Q0) = {Qi : i ∈ [1, n]} .

Then Q̂0 is invariant underH. Indeed: ∀h ∈ H, h
(
Q̂0

)
= 1

n

∑
i=1,n h (Qi) =

1
n

∑
i=1,nQi,

since h is bijective.

3.8.7. If H (Q0) is a not a �nite set. Also in this general case, Auerbach claimed that it

should be possible to de�ne the gravity center Q̂0 of Ĥ (Q0) and to proof its invariance
under H. However Auerbach did not elaborate on this case.

4. Analysis and comments of the proof

The strategy of the proof is to explicitly construct one positive quadratic form Q̂0 that
is left invariant by the bounded linear group G. For that purpose, to the bounded linear
group G operating over the normed vector space E, it is associated the bounded linear
group H operating over the normed vector space Q (E). Then one considers the action

of the group H on a given de�nite positive form Q0. The convex extension Ĥ (Q0) of the
orbit H (Q0) is bounded and globally invariant under the bounded linear group H. It

is expected to construct a point Q̂0 of Ĥ (Q0) that is invariant under H, as the gravity

center of Ĥ (Q0). This is trivial when the group G is �nite, since the group H is also
�nite, as well as the orbit H (Q0). But when the group G has in�nite number of elements,
being bounded does not tell enough for being able to make sense for �integration�. This is
when the �Haar measure� enters in the game. Or, maybe there is the option of proving the
existence of the point Q̂0 without constructing it explicitly? Could a �xed point theorem
(applicable to Banach space) work (like Sauder and Tychono�)? Either �integration� or
�continuity� path would require some topology property of the group G, then transported
to the group H.

5. License

This work by Lucas Borboleta (http://lucas.borboleta.blog.free.fr) is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-
sa/3.0/).
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